
UDC 531.011 

MCNOCYCLICITY AND ACYCLICITY OF SECCND ORDER DYNAMIC SYSTEMS 

PMM Vol.43, No.5, 1979, pp. 940-945 

I. A. KONOVALOV 
(Tiumen’) 

(Received April 10, 1978) 

The problem of monocyclicity and acyclicity of second order dynamic systems 
is considered. Results of investigations [l, 23 are extended to a wider class of 
specific dynamic systems, 

A similar problem of monocyclicity, and the roughness of periodic solutions of 
system of differential equations were investigated in [3,4]. 

1. We consider in the plane (z, y) the system 

dx / dt = x (2, y), dy / dt 7 y (5, Y) (1.1) 

and introduce the curvilinear system of coordinates (c, (p) by formulas 

y=af(z), [f(s)12+yz=ca (1.2) 

a = tgcp, 0<(<22n, o<c<+m 

Let us assume that function f is defined, univalued, and has a continuous first 

derivative over the set of real numbers f (0) = 0 and f’ (2) # 0 for (z, af (5)) = 
((5, af (z)): fa (z) -I- ya > coal, where c,, is some fixed value of c. 

The second and third assumptions imply that for the indicated z function f is 
strictly monotonic. 

We define the inverse transformation of (1.2) by formulas cp = arc@ (Y / f (x)) 
and c = [fB (z) f Y~]‘/~. ,The Jacobian of transformation (1.2) 

D (c, rp) / D (5, Y) = --f’ (4 / c (5 # 0) 

is of the same sign in each quadrant of the plane (5, y). Hence the inverse trans- 
formation ensures one-to-one mapping of the plane (5, y) (without point (0,O)) 
onto the plane (c, cp) (without point (0, 9)). 

Theorem 1. Let system (1. 1) satisfy on the set D = {(z, y): $ (x) $_ ya >, 

coa} the following conditions: 
a) X and Y are continuous and ensure the uniqueness of solution of the Cauchy 

problem; 
b) All points of set D are nonsingular; 

c) If k > i , then 

Y(@X (Qk) >, y (qk)X (4) t5 + O) 

Y(O, Y)X (0, ky) > YK', ky)X (0, Y) 

f’ (kz)Y (Q)x (qk) > f’ (z)y (qk)x (d (I =F 0) 

q = (5, 4 W), qk = (ks, 4 (WL.)) 
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d) system (1.1) has a limit cycle L, on which exists a point (z’, Y’) such that 
for k > 1 the inequalities 

f’ (WY (Q)x (Qk) > f’ (z’)y (Qk)x (Q) 

f’ (2’ / WY (Q)x (Q& <I' b')Y (Q,,,)X (Q) 
Q = (z’, 4 (41, Q,t = (kz’, af (kz’)) 

are satisfied. 

The limit cycle or of system (1. 1) is then unique in region D. 

P r o o f. Note that the first and third of conditions c) imply tnat f’ (2) > 0 
for (t, af (2)) E D. 

Let the equations 

tl = 21 (Q, Yr = Yl (0, to<t<< (1.3) 

define a closed integral curve L, of system (1.1). Owing to its closeness it inter- 
sects every half-curve of set (1.2) (a branch of curve of set (1.2) issuing from point 

(09 0)). Curve L, is not tangent to any half-curve of set (1.2). Indeed, if we 
assume that it is tangent to the half-curve 

Y = f (2) tg ‘PO (1.4) 

at some point (51 (t1)t Yl (G)) I then, owing to the continuity of functions (1.3) and 
the first two of conditions c) follows the existence of neighborhood W of point tl 
such that the section Q of curve Ll that correspond to all t E V coincides with 
some part of the half-curve (1.4) containing point (xl (tr), Yl (ti)) . If however, the 
strict inequality is satisfied for all t E TV under the specified conditions, then ow- 
ing to the continuous dependence of solution on initial conditions, section 52, except 
point (x1 (tr), + (tl)) , Lies entirely in the part of neighborhood of half-curve (1.4) 

that correspond to cp which satisfies the inequality cp < ‘PO. Hence curve L, can- 
not intersect half-curve (1.4) at the tangency point (zi (ti), y, (tl)). In the presence 

of the tangency point (zl (ti), Y1 (ti)) the curve cannot intersect the half-curve 
(1.4) at any other of its points. Otherwise there would exist a half-curve Y = f (f) 

tg 'ply 0 \( Tl < 'PO < 2n such that some section 8, of curve L, is tangent to 

the latter half-curve at some point (51 (k?)? Yl (t2)) . while being at the same time 

in a part of the neighborhood of the half-curve that corresponds to a cp such that 

‘pz=‘p11 which is impossible by virtue of the first two conditions of c ). Hence 
the relation 

f (xr)Y (Xl, Yl) - YIX (%r Ydf (51) + 0 (1.5) 

is satisfied at any point (zi, yl) of the closed integral curve t, . 
Let us assume that system (1.1) has in addition to curve L, , another closed in- 

tegral curve L2 defined by the equations 52 = x2 (0, Y, = Y, (47 to d t < T* A 11 

points of curve L, also satisfy formula (1.5) in which xz and ~2 have been sub- 

stituted for zi and Y1 . We write down system (1.1) in curvilinear coordinates 

(c, rp) in the form 

c-i& / dcp = P (c, cp) (1.6) 

p (CT TJ) = 
f (4 f’ (4 x (5, Y) + YY (5, Y/) 
f (5) y (x, Y) - Yf' (5) x (2, Y) 
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where x and y are functions of c and q defined by the relations f (x) = c cos q~, y = 

csin 9. Let L, and L, be defined in coordinates (c, ‘p) by the equations f‘ = 

c1 (rp), c2 = c2 (~1, I’~, c2 > 0 , respectively. By condition a) of the theorem 

cl ($4 # c2 (cp), 0 " 'p d 2% We assume for definiteness that c1 j c2. From Eq. 
(1.6) we have 

i2n 

.IJ- + 
i 

(1) (q?) dcp = 0 
(1.7) 

; 

(9 (cp) - p (Cl (tp), 9) - p 62 (cp), rpf 

We represent the integrand in (1.7) in the form 

o (cp) r_= cl@ / (F,P,) 

E = f’ (sI)Y (r&x (rl) - f’ (%)Y (“I)~ (rs) 

Fi = f (z&Y (ri) - Y,X (G)f (4 

where rl (rp) = (x1, YJ, r2 (9) = ( z2, YZ) are points on the limit curves. 

In conformity with condition (1.5) the denominator of the obtained fraction does 
not vanish. Let us show that the numerator of that fraction is nonnegative. Indeed, 
it is possible to indicate for every point r 1 = (51, 4 (x11) = t, 6% # 01, (09 ?43 = 4 
such two numbers k > 1 and n>l that point 

r, .= (x1 / k, af (zl / k)) E L,, (0, 111 i 4 = L, 

corresponds one-to-one to that point. These points satisfy the second of inequalities 
in d) and the third of conditions c) whose sign changes to the opposite when i / R 
is substituted for k. This means that the numerator is nonnegative and, consequently, 
retains itF sign for 0 f cp < 2~~ 0 (cp) , which contradicts condition (1.7). If follows 

from this that system (1.1) has no limit cycles imbedded in the limit cycle L, . 

Using (1.5), the third of conditions in c) and d), we similarly prove the absence of 
limit cycles surrounding L,. 

Remarks. 1”. If in Theorem 1 we assume, instead of conditions d), the 
existence in region D of an open unbounded curve r with points as close as desired 

to the curve f2 (x) + y2 = co2 at all of whose points the first of conditions in d) 
is satisfied, then system (1.1) has not more than one limit cycle in L), if all remain- 

ing conditions of Theorem 1 are satisfied. Indeed, let that condition be satisfied. If 

a limit cycle of system (1.1) exists, it necessarily must intersect curve I? at a point 

where the conditions d) of Theorem 1 are satisfied and, consequently, that limit 

cycle is unique. 

2”. The Theorem 1 in [4] is tbecorollaryof the present theorem, if in the latter 

we set f(z) = x and take into account Remark 1”. 

3”. If in Theorem 1 we reject condition d), a ring region surrounding the bound- 
ary of region D at whose every point (z, y)# the relationship 

Y (p)x bk) = y (‘?k)x td 

f’ (WY (q)x (q/c) = f’ (r)Y (qk)x ((I) 

is satisfied is possible. & other words that region may be completely filled with closed 

integral curves of system (1.1). 
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4”. If system (1.1) has a limit cycle L,, then it is orbitally stable, The orbital 
i~tabi~~ of the periodic solution is estab~hed by reversing the inequa~ty signs in 
c) and d). 

T h e r o e m 2. Let us assume that 

e) functions X fs, Y) = Y and Y (2, yf = -g (5) + I.@ (2, y) satisfy condition 
in a) and b) of Theorem 1; 

f)if k>l 

@(g)&@(f&) (5#0), @(%9)>,@(O,kV) 
g’ fkx) Y (4) ag (kz) 2 g’ (4 Y (4k) ag (4 

g) on the limit cycle L, of system (1.1) there is a point (%I, y’) such that 

g’ (kz’) Y @) ag (ks’) > g’ (s‘f Y @k) %' b') 
g' w f kl y (Q) G! (2' I a <ET' 64 y Wl,kl w (4 

h) the properties of function g are identical to those of function f , then 
system (1.1) has the single limit cycle 4 in D. 

P r o o f. Let us show that functions X and Y satisfy the remaining conditions 
in c) and d) of Theorems 1. The fulfilment of the third of conditions in c) and 
of condition in d) of the theorem is evident. We shall prove the validity of the first 
and second of condition in c) by contradiction. Let us assume that 

Y (4) X (4k) - Y bk) x (4) < 0 

From the conditions of the theorem we have 

I-- g (f) + ag (sf B, (411 ag (k4 - t-g WI + ag bw @ b3clf @g (4 < 0 

Taking into account that a = Y / B (4 we obtain the inequality 

y2g (ks) [@ (4) - dp (qk)] / g (5) < 0 (Y # 0) 

But g (3) g (kx) > 0 , hence tf, (q) < @ (4%) which contradicts the first two of 
conditions f) of Theorem 2. The theorem is proved. 

Note that the theorem is valid for any doubly-connected region D* which repres- 
ents the plane (s, y) from which the singly-connected region that contains point 

(0, 0) and is bounded by a closed curve, when all conditions of Theorem 1 are 

satisfied in D*. 

In Theorem 2, as in Theorem 1, the stable orbital periodic solution is considered 
when it exists. By reversing the signs of inequalities in f) and g) we estabIish in- 
stability of the periodic solution. 

2. Let us establish the conditions of difference between monocyclic and acyclic 
systems of the second order. We assume that 

i) x = X, + X2, Y = Y, + Y2 
j) the auxiliiary system 

ds / dt = X, (2, I/), dy / dt = yl (5, y) 

satisfies the conditions of uniqueness of solution of the Cauchy problem, and has, as 
its first inegral F (2, Y) = C, where c > 0, F (0, 0) = 0 , and F is a single- 

valued function with F (q) < F (qEI) in the plane (I, Y) ; 
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k) in region D* = 1(x:, y): c o2 < P (5, y) 5 c12} (where cr = + CO) is admis- 
sible) X and Y Satisfy all conditions of Theorem 1 with allowance for Remark 1”. 

T h e o r e m 3. Let in .D* exist a single closed curve 1,” surrounding curve 

F (x, y) == co2 

Curve I;* is defined by the equation 
(2.1) 

Xi(.C, y) Y, (z, Y) - x, (5, Y) Y, (51 Y) = O (2.2) 
The expression XrY, - X,Y, changes its sign when passing across curve (2.2). 

In that case system (1.1) has a single steady limit cycle in iD* . 

P r o o f. The equation I: (5, Y) = C defines a topographical system of closed 
curves surrounding the singular point (0, 0) , imbedded in each other, and filling 
the whole area. The derivative Ft’ by virtue of system (1.1) is defined by 

f‘. ’ z: I F,‘X, -t Fv’Y, 

Then (2.2) is the contact curve of the auxilliary and the (1.1) systems. From j) 
and k), and conditions of this theorem follows the existence of a single stable limit 

cycle. The theorem is proved. 
lf the signs of inequalities in c) and d) of Theorem 1 are reversed with k > 1 

and all conditions of Theorem 3 satisfied, system (1. 1) has a single unstable limit 
cycle in D* . 

If curve (2.2) intersects curve (2. I)* or lies entirely in region D* without en- 

circling curve (2. l), or degenerates into a point, or is imaginary, there exists an open 

integral curve passing through the whole region D *, and containing points as close 

to the boundary @. 1) as desired. By condition a) of Theorem 1 system (1.1) has no 
limit cycle in D*. 

T h e o r e m 4. Let us make the following assumptions, 
1) in the region 

z 

s 
g (5) ix >, CC?’ 

I I, 

system (1.1) satisfies all conditions of Theorem 2 with allowance for Remark 1”. 
m) the equation CD (5, IJ) = 0 determines the closed curve which envelops the 

boundary (2.1) of region u, , Then system (1.1) has a single stable limit cycle in 
region D, . 

n) if the closed curve cft (z, y) = o intersects the boundary of D,. it is either 

entirely located in D,, without enveloping that boundary, or degenerates into a point, 

or is imaginary, then system (1.1) is acyclic in D,. 

P r o o f. As the topographic system we shall consider the integral curves F (5, 
y2) = C of the auxilliary system 

dx / dt = y, dy / dt = - g (5) 

By virtue of system (1.1) the derivative Ft’ is of the form Ft’ = yW (T, y). 
Hence Theorem 4 is a corollary of Theorem 3. 
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8. A suitable selection of the expansion of Y (5, y) = -g (5) + yQ, (5, y) makes 
it possible to determine the criteria of the single limit cycle existence. We apply the 
results of investigations in Sects. 1 and 2 to the system 

dx / dt = y, dy / dt = Y (x, y) (3. I) 

Y(z,y)= ; . aik&ik, 'ik = const 
i+k=l 

Theorem 5. System (3.1) has a single stable limit cycle if the coefficients 
aik satisfy the conditions 

al0 < 0, a00 < 0, azo = 0 (3.2) 

6 = o+os - ‘IG& > 0 (3.3) 

sol > 0, azl + ao3 < 0 (3.4) 

2a,A2 + a3A4 + 2c02 > 0, X2 < co2 (3.5) 

ha = x0” + yo2, x0 = (Vpai2a02 - V2a09z1i) / 6 

y0 = ?14q2all - 1/2a21a02) 16 

P I: o o f. We select function g and Cp of the form 

g (5) = - alOx - aOox3 

U-J (x, y) = sol -I- al15 + wy + q2xy + az1x2 + aOOya 

It follows from (3.3) and (3.4) that the equation Q, (x, y) = 0 determines an 
ellipse surrounding the singular point (0, 0) of system (3.1). hence there exists a 

co such that the ellipse encircles the curve 

ya + 2 5 g (2) ax = Co2 (3.6) 

I Y I <‘co, I x I < {aSo+ I-al0 - (alo2 - 2a30c02)1~~l11~~ 

The region D, in which condition m ) of Theorem 4 is satisfied, has been thus 

constructed. All conditions of Theorem 2 are also satisfied in D, . The conditions 

of Theorem 5 imply that the equation z = 0 (x, y) defines a paraboloid whose vertex 
is projected to point (x0, yo) of the plane (x, 4) . Let us show that point (x0, yo) 

lies inside region B bounded by the closed curve (3.6). Let us consider the circle 

x2 -I- y2 = h2 on which lies point (x0, yo). The distance d = (x2 + y2)‘lz from 

point (x, y) to the coordinate origin determined by (3.6) is 

d2 = a,,,“4 / 2 $- (alo + i) X2 + CO’ > ha (3.7) 
The upper bound of solution of this inequality for 1 z 1 exceeds the upper bounds of 

solution of inequalities (3.6) with conditions (3.5) satisfied. It follows from this that 

condition (3.5) implies the fulfilment of condition (3.7) at point B and that point 

(50, YO) E B. Hence function UJ (x, y) is strictly decreasing when passing in region 
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D, from point q to point Q:: . The first of conditions f) of Theorem 2 is then sat- 
isfied in that region, from which follows the strict inequality in the first of conditions 

c) of Theorem 1. To prove this it is sufficient to show that z # 0 when k > 1 

0 < g’ (4 < g’ (4 (3.8) 

Actually, since g”(s) = -6~~~s , hence g”(x) > 0 when 5 > 0, and the in- 
equality (3.8) is satisfied. Let I < 0 , then on the axis y = 0 point kr lies 
to the left of point 5 . Moreover, g” (5) < 0, hence condition (3.8) is satisfied 
for x<o. The last condition of Theorem 2 for function g (x) is verified in 
the same manner. Thus, region D, is monocyclic. 

In the first of inequalities in condition (3.4) is reversed, with all remaining con- 
ditions of this theorem retained, system (3.1) becomes acyclic, since for ool < (1 
curve @ (I, y) = 0 - does not encircle point (0, 0). The latter shows that co is such 
that the curve of contacts lies entirely in region D, without encircling its boundary. 
From this follows the validity of statement n ) of Theorem 4. The theorem is prov- 

ed. 
If conditions (3.2), (3.3), and one of conditions 

A = 4a,1a,,a,l + ~llcclsczo~ - 01~&,3 - 01s2001 - ao&,l = 0 

‘/,A (azl + aos) > 0 

which implies that the curve CD (x, y) = 0 is, respectively, imaginary or degenerat- 
es into a point, then system (3.1) is acyclic. 

We assume that in the last theorem a20 f 0 t and instead of (3.2) consider the 
conditions ai, < 0, and u2o2 - 3ar,a,, < 0. We furthermore stipulate that point 

(--a20 / (3a,,), y) must not belong to region {(z, Y): g2 (5) + P >, co21 . Then, 

altering suitably conditions (3.5) and retaining the remaining conditions of Theorem 
5, we obtain the confirmation of the existence of a single stable limit cycle in system 

(3.1). 
We note in conclusion that Theorem 1 remains valid also, when in the last of 

conditions c) and in conditions d) of that theorem the signs are reversed, since such 
reversal does not alter the sign of the numerator of fraction o(cp) 0 
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